Reactions of methyl fluoride with atomic transition-metal and main-group cations: gas-phase room-temperature kinetics and periodicities in reactivity.

نویسندگان

  • Xiang Zhao
  • Gregory K Koyanagi
  • Diethard K Bohme
چکیده

Reactions of CH(3)F have been surveyed systematically at room temperature with 46 different atomic cations using an inductively coupled plasma/selected-ion flow tube tandem mass spectrometer. Rate coefficients and product distributions were measured for the reactions of fourth-period atomic ions from K(+) to Se(+), of fifth-period atomic ions from Rb(+) to Te(+) (excluding Tc(+)), and of sixth-period atomic ions from Cs(+) to Bi(+). Primary reaction channels were observed corresponding to F atom transfer, CH(3)F addition, HF elimination, and H(2) elimination. The early-transition-metal cations exhibit a much more active chemistry than the late-transition-metal cations, and there are periodic features in the chemical activity and reaction efficiency that maximize with Ti(+), As(+), Y(+), Hf(+), and Pt(+). F atom transfer appears to be thermodynamically controlled, although a periodic variation in efficiency is observed within the early-transition-metal cations which maximizes with Ti(+), Y(+), and Hf(+). Addition of CH(3)F was observed exclusively (>99%) with the late-fourth-period cations from Mn(+) to Ga(+), the fifth-period cations from Ru(+) to Te(+), and the sixth-period cations from Hg(+) to Bi(+) as well as Re(+). Periodic trends are observed in the effective bimolecular rate coefficient for CH(3)F addition, and these are consistent with expected trends in the electrostatic binding energies of the adduct ions and measured trends in the standard free energy of addition. HF elimination is the major reaction channel with As(+), while dehydrogenation dominates the reactions of W(+), Os(+), Ir(+), and Pt(+). Sequential F atom transfer is observed with the early-transition-metal cations, with the number of F atoms transferred increasing across the periodic table from two to four, maximizing at four for the group 5 cations Nb(+)(d(4)) and Ta(+)(d(3)s(1)), and stopping at two with V(+)(d(4)). Sequential CH(3)F addition was observed with many atomic cations and all of the metal mono- and multifluoride cations that were formed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heavy water reactions with atomic transition-metal and main-group cations: gas phase room-temperature kinetics and periodicities in reactivity.

Reactions of heavy water, D(2)O, have been measured with 46 atomic metal cations at room temperature in a helium bath gas at 0.35 Torr using an inductively coupled plasma/selected ion flow tube tandem mass spectrometer. The atomic cations were produced at ca. 5500 K in an ICP source and were allowed to decay radiatively and thermalize by collisions with Ar and He atoms prior to reaction. Rate c...

متن کامل

Carbon disulfide reactions with atomic transition-metal and main-group cations: gas-phase room-temperature kinetics and periodicities in reactivity.

The reactions of 46 atomic-metal cations with CS2 have been investigated at room temperature using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. Rate coefficients and products were measured for the reactions of fourth-period atomic ions from K+ to Se+, of fifth-period atomic ions from Rb+ to Te+ (excluding Tc+), and of sixth-period atomic ions from Cs...

متن کامل

Gas-phase reactions of carbon dioxide with atomic transition-metal and main-group cations: room-temperature kinetics and periodicities in reactivity.

The chemistry of carbon dioxide has been surveyed systematically with 46 atomic cations at room temperature using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. The atomic cations were produced at ca. 5500 K in an ICP source and allowed to cool radiatively and to thermalize by collisions with Ar and He atoms prior to reaction downstream in a flow tube ...

متن کامل

Gas-phase reactions of atomic lanthanide cations with CO2 and CS2: room-temperature kinetics and periodicities in reactivity.

Gas-phase reactions of atomic lanthanide cations (excluding Pm+) have been surveyed systematically with CO2 and CS2 using an inductively coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. Observations are reported for reactions with La+, Ce+, Pr+, Nd+, Sm+, Eu+, Gd+, Tb+, Dy+, Ho+, Er+, Tm+, Yb+, and Lu+ at room temperature (295 +/- 2 K) in helium at a total pressure of ...

متن کامل

Gas-phase reactions of nitric oxide with atomic lanthanide cations: Room-temperature kinetics and periodicity in reactivity

An inductively coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer has been employed in a systematic survey of the room-temperature kinetics of reactions of NO with 13 atomic lanthanide cations from Ce+ to Lu+ (excluding Pm+). The atomic ions are produced at ca. 5500 K in an ICP source and are allowed to decay radiatively and to thermalize by collisions with Ar and He atom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 110 36  شماره 

صفحات  -

تاریخ انتشار 2006